Total Trihalomethanes Report | | WS ID: 32130 | | | | 1: NORTH RE | TETTO | | | | | | |--|--|---|--|---|---|---|----------------|---|--|--|--------| | Р | WS Name: | NORTH | READING | WATER D | EPT | | | 7 P | WS Class: | COM 🗷 | NTN | | F | DEP Location | T | | | | IComple | | | | | | | L | (LOC)ID# | DEP Loc | cation Name | е | | Sample Acidified? | Date | _ | | | | | A | 10281 | | HOOL- HAVE | | | | Collected | Collect | ed By | | | | В | 10283 | TOWN HA | LL TAP | WINEE OT, | | YES | 10/04/16 | Mark E | . Clark | | | | C | 10300 | | ARK BLDG | | | YES | 10/04/16 | Mark E. | . Clark | | | | D | 10301 | LINDENMEYER-MUNROE | | | | YES 10/04/16 Mark E. Clark
YES 10/04/16 Mark E. Clark | | | | 2 2 1 | | | | Routine or | | iginal, Resubm | | | TES | | | | | | | | Special Sample | | Confirmation R | | - | | If resubmitte | d Report, I | ist below: | | | | Α | ⊠ RS □SS | ☑ Original ☐ Resubmitted ☐ Confirm | | | (1) Reason for Resubmission ation ☐ Resample ☐ Reanalysis ☐ Report Correction | | | | (2) Collectio | n Date of Origi | nal Sa | | В | ⊠RS □SS | ☑ Original | Resubmitte | ed \square Confirm | | e LI Reanalysis L | Report Corr | ection | | | | | | ⊠RS □SS | ✓ Original | Resubmitte | ed \square Confirm | | e 🗆 Reanalysis 🗆 | Report Corre | ection | | | | | D | ¥RS □SS | ✓ Original | Resubmitte | ed Confirm | | Reanalysis [| Report Corre | ection | | | | | \neg | Sample Notes | | | | Tesample | Reanalysis L | J Report Corre | ection | | | | | A | | | | | | | | | | | | | В | | | | | | | | | | | | | C | | | | | | | | | | | | | 5 | | | | | | | | | | | | | _ | | | | | | | | | | | | | | Contami | nant | MCL | MDL | Results ¹ µg/L | | | | | | - | | ota | I THMs | | μg/L
80 | µg/L | A | В | | (| | | | | | | | I OU | | | | | | | D | | | | noform | to the first | | 0.5 | 47.4 | 36.1 | | 39 | .5 | | _ | | nlo | noform
proform | | | 0.5 | 1.75 | 1.29 | | 39
N | | 48.1 | | | | roform | nane | | 0.5 | 1.75
21.1 | 1.29
15.4 | | | D | 48.1
ND | | | ron | roform
nodichlorometh | nane | | 0.5
0.5 | 1.75
21.1
14.2 | 1.29
15.4
11.2 | | N | D
.7 | 48.1
ND
33.7 | | | ron | roform
nodichlorometh
omochlorometh | nane | | 0.5 | 1.75
21.1
14.2
10.3 | 1.29
15.4
11.2
8.22 | | N
20 | D .7 .9 | 48.1
ND
33.7
10.8 | | | ron
ibro | roform
nodichlorometh
omochlorometh
Method | nane | | 0.5
0.5 | 1.75
21.1
14.2 | 1.29
15.4
11.2 | 1.2 | N
20
12
5.9 | D
.7
.9 | 48.1
ND
33.7
10.8
3.62 | | | ron
ibro | oroform
modichlorometh
omochlorometh
Method
Extracted (551. | nane | | 0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2 | 1.29
15.4
11.2
8.22
EPA 524 | | N
20
12 | D
.7
.9 | 48.1
ND
33.7
10.8 | | | ibro | proform
modichlorometh
prochlorometh
Method
Extracted (551.
Analyzed | nane | | 0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2 | 1.29
15.4
11.2
8.22 | | N
20
12
5.9 | D .7 .9 .9 .93 | 48.1
ND
33.7
10.8
3.62
EPA 524 | 4.2 | | ibro | proform
modichlorometh
prochlorometh
Method
Extracted (551.
Analyzed
Sample ID# | nane
1 only) | | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1 | | 20
12
5.9
EPA 5 | D .7 .9 .93 | 48.1
ND
33.7
10.8
3.62
EPA 52: | 4.2 | | ibro ib M ite ite ib S rro | modichlorometh
pmochlorometh
Method
Extracted (551.
Analyzed
sample ID#
gate #1: 4-8 | 1 only) | Dbenzene | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | N
20
12
5.9
EPA 5 | D .7 .9 .9 .93 .624.2 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b M
te
te
b S
rro | modichlorometh
pmochlorometh
Method
Extracted (551.
Analyzed
Sample ID#
gate #1: 4-t
gate #2: 1,2 | 1 only) | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1 | | 20
12
5.9
EPA 5 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b M
te
te .
b S | modichloromethemoc | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b I te te . | modichlorometh
pmochlorometh
Method
Extracted (551.
Analyzed
Sample ID#
gate #1: 4-t
gate #2: 1,2 | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b M
te
te .
b S | modichloromethemoc | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b Mite te . | modichloromethemoc | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | b Mite te . | modichloromethemoc | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | ron
ibro
ib M
ite
ite
ite
rro | modichloromethemoc | 1 only) promofluoro 2-dichlorobe | obenzene
enzene-d4 | 0.5
0.5
0.5 | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106 | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | | 20
12
5.9
EPA 5
10/05
6100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52
10/05/1
610037 | 4.2 | | ron ibro ibro ib N ite ite irro irro irro | oroform nodichlorometh modichlorometh modichloromet | oromofluoro
2-dichlorobe
umber great | obenzene
enzene-d4
ter than 0 or Ni | 0.5
0.5
0.5
%
%
D(not a <mdl< td=""><td>1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
. value)</td><td>1.29
15.4
11.2
8.22
EPA 524
10/05/16
610035
106
104</td><td>6</td><td>N) 20 12 5.9 EPA 5 10/05 6100 100</td><td>D .7 .9 .9 .93</td><td>48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105</td><td>4.2</td></mdl<> | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
. value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/16
610035
106
104 | 6 | N) 20 12 5.9 EPA 5 10/05 6100 100 | D .7 .9 .9 .93 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | ron ibro ib M ate ite ib S irro irro irro cer | modichloromethomoc | oromofluoroce-dichlorobe number great OTES | obenzene
enzene-d4
ter than 0 or Ni | 0.5
0.5
0.5
%
%
D(not a <mdl< td=""><td>1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
value)</td><td>1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035</td><td>6</td><td>N) 20 12 5.9 EPA 5 10/05 6100 100</td><td>D .7 .9 .9 .93 .624.2 .6/16 .36 .33</td><td>48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105</td><td>4.2</td></mdl<> | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035 | 6 | N) 20 12 5.9 EPA 5 10/05 6100 100 | D .7 .9 .9 .93 .624.2 .6/16 .36 .33 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | ron ib M ite ite ite iro rro rro R LA | modichloromethomoc | oromofluoroce-dichlorobe umber great | obenzene
enzene-d4
fer than 0 or Ni | 0.5 0.5 0.5 % % % D(not a < MDL) | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
.value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035
106
104 | 6 dure: | N) 20 12 5.9 EPA 5 6100 103 103 | D .7 .9 .9 .93 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | ron ibro ibro ib M ib M ite ite ite irro irro irro irro cer oriz | modichloromethomoc | oromofluoroce-dichlorobe umber great | obenzene
enzene-d4
fer than 0 or Ni | 0.5 0.5 0.5 % % % D(not a < MDL) | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
.value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035
106
104 | 6 | N) 20 12 5.9 EPA 5 6100 103 103 | D .7 .9 .9 .93 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | ron ibro ib M ite ite ite irro rro rro cer oriz ie, a | modichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethemodichloromethod | nane 1 only) promofluoro 2-dichlorobe number great OTES s of law that rm and the in- | Denzene
enzene-d4
der than 0 or NI
I am the perso
information con
est extent of m | 0.5 0.5 0.5 % % % D(not a <mdl< td=""><td>1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
.value)</td><td>1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035
106
104</td><td>ture:</td><td>N) 20 12 5.9 EPA 5 10/05 6100 103 103 103 103 103 103 103 103 103</td><td>D
.7
.9
.9
.33
.524.2
.5/16
.36
.3
.3
.1</td><td>48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105</td><td>4.2</td></mdl<> | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
.value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/1
610035
106
104 | ture: | N) 20 12 5.9 EPA 5 10/05 6100 103 103 103 103 103 103 103 103 103 | D
.7
.9
.9
.33
.524.2
.5/16
.36
.3
.3
.1 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | ron ibro ibro ite ite ite ite ite ite cer cer oriz ie, a | modichloromethemodich | oromofluoroce-dichlorobe umber great OTES s of law that rm and the indice to the builts electronic | Denzene enzene-d4 er than 0 or Ni I am the perso information con est extent of m | 0.5 0.5 0.5 0.5 % % % D(not a < MDL) n itained herein ly knowledge. | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/11
610035
106
104 | ture: | N) 20 12 5.9 EPA 5 10/05 6100 100 100 100 100 100 100 100 100 10 | D .7 .9 .9 .93 .524.2 .5/16 .36 .33 .1 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | cerroriz e, a | modichloromethemodich | oromofluoroce-dichlorobe sumber great OTES s of law that rm and the interpretation of the builts electronic which you received. | Denzene enzene-d4 er than 0 or Ni I am the perso information con est extent of m | 0.5 0.5 0.5 0.5 % % % D(not a < MDL) n itained herein ly knowledge. | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/11
610035
106
104 | ture: | N) 20 12 5.9 EPA 5 10/05 6100 100 100 100 100 100 100 100 100 10 | D .7 .9 .9 .93 .524.2 .5/16 .36 .33 .1 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | cer oriz e, sul | roform nodichlorometh modichlorometh | oromofluoroz-dichlorobe
number great
OTES | I am the person formation con est extent of m cally, mail Two evived this report | 0.5 0.5 0.5 0.5 % % % D(not a < MDL) n itained herein ly knowledge. | 1.75
21.1
14.2
10.3
EPA 524.2
10/05/16
610034
106
101
.value) | 1.29
15.4
11.2
8.22
EPA 524
10/05/11
610035
106
104 | ture: | N, 20 12 5.9 EPA 5 10/05 6100 100 100 100 100 100 100 100 100 10 | D .7 .9 .9 .9 .77 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 | | b M te te te so S rro | modichloromethemodich | oromofluoroce-dichlorobe sumber great OTES s of law that rm and the interpretation of the builts electronic which you received. | I am the person formation con est extent of m cally, mail Two evived this report | 0.5 0.5 0.5 0.5 % % % D(not a < MDL) n itained herein ly knowledge. | 1.75 21.1 14.2 10.3 EPA 524.2 10/05/16 610034 106 101 . value) Primary Lab is report to DEP Regithan 10 days after the | 1.29
15.4
11.2
8.22
EPA 524
10/05/11
610035
106
104 | ture: | Ni 20 12 5.9 EPA 5 10/05 6100 100 100 100 100 100 100 100 100 10 | D .7 .9 .9 .93 .524.2 .5/16 .36 .33 .1 | 48.1
ND
33.7
10.8
3.62
EPA 52:
10/05/1
610037
102
105 | 4.2 |